
Fast and Sensitive Classification of Short
Metagenomic Reads with SKraken

Jia Qian, Davide Marchiori, and Matteo Comin(B)

Department of Information Engineering, University of Padova, Padua, Italy
comin@dei.unipd.it

Abstract. The major problem when analyzing a metagenomic sample
is to taxonomically annotate its reads in order to identify the species and
their relative abundances. Many tools have been developed recently, how-
ever they are not always adequate for the increasing database volume.
In this paper we propose an efficient method, called SKraken, that com-
bines taxonomic tree and k-mers frequency counting. SKraken extracts
the most representative k-mers for each species and filter out less repre-
sentative ones. SKraken is inspired by Kraken, which is one of the state-
of-art methods. We compare the performance of SKraken with Kraken
on both real and synthetic datasets, and it exhibits a higher classification
precision and a faster processing speed. Availability: https://bitbucket.
org/marchiori dev/skraken.

1 Introduction

Metagenomics is a study of the heterogeneous microbes samples (e.g. soil, water,
human microbiome) directly extract from the natural environment with the pri-
mary goal of determining the taxonomical identity of the microorganisms resid-
ing in the samples. It is an evolutionary revise, shifting focuses from the indi-
vidual microbe study to a complex microbial community. As already mentioned
in [1,2], the classical genomic-based approaches require the prior clone and cul-
turing for the further investigation. However, not all bacteria can be cultured.
The advent of metagenomics succeeded to bypass this difficulty.

The study of metagenomics is far more than just about labeling the species
of the microbes. The analysis can reveal the presence of unexpected bacteria and
viruses in a microbial sample, also allows the identification and characterization
of bacterial and viral genomes at a level of detail not previously possible. For
example, in the case of the human body, imbalances in the microbiome are related
with many diseases, e.g. inflammatory bowel disease (IBD) [3] and colorectal
cancer [4]. Furthermore it may aid the researchers to systematically understand
and characterize the microbial communities: how genes influence each others
activities in serving collective functions; grasp the collections of communities
that composites the biosphere where the humans be a part, etc. It has already
been applied in many areas like ecology, medicine, microbiology and some others
mentioned in [3–6].
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In this paper, we focus on the taxonomic classification, one branch of the
metagenomics investigation, with a referenced database. Generally speaking,
two techniques could be in consideration for the sake of classification task:
(1) sequencing phylogenetic marker genes, e.g., 16S rRNA; (2) next generation
sequencing (NGS) of all the genomic material in the sample. The use of marker
genes requires amplification steps that can introduce bias in the taxonomic anal-
ysis. Moreover, not all bacteria can be identified by traditional 16S sequencing for
its divergent gene sequences [7]. Indeed, We believe that the most effective and
unbiased method to study microbial samples is via whole-genome NGS. However,
the short length of NGS reads poses a number of challenges to the correctness
of taxonomical classification for each read. Several methods and software tools
are already available, but with the increasing throughput of modern sequencing
technologies, the faster and more accurate algorithms are needed. These meth-
ods can be broadly divided into three categories: (1) sequence-similarity-based
methods, (2) marker-based methods where certain specific marker sequences are
used to identify the species. (3) sequence-composition-based methods, which are
based on the nucleotide composition (e.g. k-mers usage).

The sequence-similarity-based methods work as searching reads according
to the sequence similarity in the reference database, the popular examples are
MegaBlast [8] and Megan [9]. They precisely identify reads from genomes within
the reference database, while they are generally very slow, especially compared
with composition-based methods. Marker-based methods try to use phylogenetic
marker genes as a taxonomic reference [10–12]. For example, MetaPhlAn [12] is
based on marker genes that are clade specific.

The fastest and most promising approaches belong to the composition-based
one. Its trait can be summarized as follows: the genomes of reference organisms
are modeled based on k-mers counts; the reads are searched throughout the
reduced-version database. The most representative methods located within this
category are Kraken [13], Clark [14] and Lmat [15]. As for the precision of these
methods, they are as good as MegaBlast [8] (similarity-based method), neverthe-
less the processing speed is much faster. Thus, these methods are really capable
to keep pace with the increasing throughput of modern sequencing instruments.

Recently the paper [16] has shown that Kraken [13] is one of the most promis-
ing tool in terms of classifying correctness and speed. It owes to the construction
of the reference database, where each genome is expressed by k-mers (a piece
of genome with length k), and the a taxonomic tree. More precisely, Kraken
constructs a data structure that is an augmented taxonomic tree in which a list
of significant k-mers is associated to each node, leafs and internal nodes. Given
a node on this taxonomic tree, its list of k-mers is considered representative for
the taxonomic label and will be used for the classification of metagenomic reads.

Inspired by this paradigm, in this paper we propose SKraken1, a tool for
metagenomics reads classification that selects the most representative k-mers
for each node in the taxonomic tree, though, filtering out uninformative k-mers.
The main properties of SKraken can be profiled as: (i) an efficient detection

1 A preliminary version of this manuscript was published in [17].
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of representative k-mers over the taxonomic tree; (ii) SKraken improves the
precision over Kraken on both simulated and real metagenomic datasets with-
out compromising the recall; (iii) benefit from the downsized database. As a
consequence, SKraken requires less memory RAM and the classification speed
increases w.r.t. Kraken. In the next section we will give an overview of Kraken
and analyze how to improve the classification. SKraken is presented in Sect. 2.2.
Both tools are tested on simulated and real metagenomic datasets in Sect. 3 and
the conclusions are drawn in Sect. 4.

2 Method

2.1 An Overview of Kraken

In order to better understand our contribution let’s briefly present Kraken in
the first place. Instead of utilizing the complete genome as reference, Kraken
considers only its k-mers, as well as many other tools [14,15], thus a genome
sequence is alternatively represented by a set of k-mers, which plays a role of effi-
ciently indexing a large volume of target-genomes database, e.g., all the genomes
in RefSeq. This idea is stemmed from alignment-free methods [18] and some
researchers have verified its availability in different applications. For instance,
the construction of phylogenetic trees, traditionally is performed based on a
multiple-sequence alignment technique, the process is be carried out on the whole
genomes [19,20], in practice it’s difficult to realize due to the improper length
of whole genomes. The alignment-free technique with the usage of k-mers is the
solver. Recently some variations of k-mers-based methods have been devised for
the detection of enhancers in ChIP-Seq data [21–25] and entropic profiles [26,27].
Recently, the assembly-free comparison of genomes and metagenomes based on
NGS reads and k-mers counts has been investigated in [28–31]. For a compre-
hensive review of alignment-free measures and applications we refer the reader
to [18].

Considering the taxonomic tree, taken from the complete NCBI taxonomic
information, this data structure is extended by annotating each node with k-
mers, including leaves and internal nodes. Every node is associated with a list
of k-mers that are critical for the future classification. More precisely, given a
dataset of target genomes, the construction of this annotated taxonomic tree
is carried out by scanning the k-mers of each genome in the dataset. If the
k-mer appears only in a given genome, it is associated only to one leaf node J
(representing that genome) and the k-mers list of node J is updated. If the k-mer
appears in more than one species, the k-mer is erased from those corresponding
nodes and moved to the lowest common ancestor of these nodes, see Fig. 1 for
an example. At the end of this step each k-mer belongs to only one node in the
taxonomic tree.

Once this database of annotated k-mers has been constructed, Kraken can
classify reads in a very efficient manner. Figure 2 reports an overview of the
classification process. Later when we launch the classification procedure, with a
given read, Kraken firstly decomposes the read into a list of its k-mers. Then each
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Fig. 1. In this example the k-mer AGCCT , that is contained in the species 9 and 13,
is moved to the lowest common ancestor, the family node 2 (figure taken from [17]).

Fig. 2. An overview of the metagenomic reads classification of Kraken (figure taken
from [13]).

k-mer is searched in the augmented taxonomic tree, whenever it hits we increase
the counter of the corresponding node. After all k-mers have been analyzed, we
will classify the read by searching the highest-weight path in the taxonomic tree,
from top to button.

2.2 SKraken: Selecting Informative k-mers

The most important step of Kraken is the construction of the augmented taxo-
nomic tree, annotating by a list of k-mers per node in order to implement the
classification. In this paper we propose SKraken that has an exclusive procedure,
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distinguishable from Kraken, we select and filter k-mers instead. Therefore, those
uninformative k-mers will be pruned away from the augmented taxonomic tree.

It may occur that one k-mers appears in more than one species, like demon-
strated in Fig. 1, sequence “AGCCT” belongs to two species. Kraken adds this
k-mers into the ancestor node 2 (representing a taxonomic family) out of node 9
and node 13. Since this k-mers will be used in the classification step, we would
like to be informative for the family node 2. However, the majority of species in
this family, nodes 10, 11 and 12, do not contain this k-mers.

Fig. 3. An example of quality score q(GAACT ) (figure taken from [17]).

To address this issue, for each k-mer, we define a scoring function that cap-
tures its representativeness within the taxonomic node. We recall that a k-mer
is associated with only one node in the tree. Let’s define TaxID(m) that indi-
cates the taxonomic node associated with the k-mer m. However, before the
upward shift of k-mer, it is possible to occur in more than one species. We
define NumSpecies(m) as the number of species that contains m. By construc-
tion TaxID(m) is the lowest common ancestor of all these species. Thus the
species in which m appears, they are all leaf nodes of the subtree TaxID(m).
We define TotSpecies(n) as the total number of species in the subtree routed
in the node n. With these values we define q(m) the quality of a k-mer m as
(equation from [17]):

q(m) =
NumSpecies(m)

TotSpecies(TaxID(m))

Figure 3 shows an example of the quality q(GAACT ). The quality of GAACT
can also be interpreted as the percentage of species nodes that contains
GAACT , i.e. NumSpecies(GAACT ), with respect to the family node 2, i.e.,
TaxID(GAACT ), in this case 60%. Similarly, if we consider the example in
Fig. 1, the quality of q(AGCCT ) = NumSpecies(AGCCT )

TotSpecies(TaxID(AGCCT )) = 2
5 = 0.4,
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that is 40%. We can conclude as, a k-mer has an high quality can be consid-
ered representative for a given taxonomic node and the relative sub-tree, thus
more likely will be informative for the classification. Based on these observations
SKraken tries to screen out the uninformative k-mers by means of their quality
value, and prunes the augmented taxonomic tree by removing the k-mers with
a quality below a given threshold Q.

In order to compute the quality scores q(m) for all k-mers we have to evaluate
NumSpecies(m) and TotSpecies(n) efficiently. Here is our setting: the construc-
tion of the augmented taxonomic tree of SKraken is divided into two steps. In
the first step, given a set of target genomes, we scan the k-mers of each genome
and build the augmented taxonomic tree, similarly to Kraken. Meanwhile, we
set a variable to keep tracking NumSpecies(m), as soon as m is found in a
new species we increment this variable. However, there can be genomes that are
further classified as sub-species of a given species node. In order to compute the
correct value of NumSpecies(m), we need to make sure that all genomes of a
given species are processed before moving to next species. This can be tackled
by scanning the input genomes in a particular order so that all genomes of a
species and the sub-species, are processed at once. Another problem is the fact
that a k-mer can appear in some sub-species of a given species node. When
computing NumSpecies(m) we must ensure not to overcount these occurrences,
and thus the corresponding variable is incremented only when m is found for the
first time in a given species. All other occurrences of m within the same species
will be discarded. At the end of the first step we have computed the augmented
taxonomic tree, with all k-mers, and the corresponding values NumSpecies(m).

In the second step SKraken computes the quality values q(m) and filters
uninformative k-mers. The number of leaf nodes that are the descendants of n,
indicated as TotSpecies(n), can be obtained for all nodes in the tree with a post-
order traversal of the taxonomic tree. Consequently all k-mers are processed and
the corresponding qualities q(m) are computed. If q(m) is below a given input
parameter Q, m is removed from the database.

Note that the size of the taxonomic tree is constant and much smaller with
respect to the number of k-mers. The overall process depends only on the total
number of k-mers and its size is linear to the input reference genomes. Once
the augmented taxonomic tree is build, reads can be classified with the same
procedure of Kraken.

3 Results

3.1 Datasets

Before the demonstration of result, we need to build a reference dataset. We
conduct the experiments both on real and simulated datasets with different
bacterial and archaeal genomes from NCBI RefSeq in order to capture a com-
prehensive understanding of the performance. The simulated and real datasets
are acquired from the original paper of Kraken [13] as well as from other related
studies [14,32–34]. The simulated datasets represent five mock communities that
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are constructed from real sequencing data: MiSeq, HiSeq, Mix1, Mix2, simBA5.
MiSeq and HiSeq metagenomes were built using 10 sets of bacterial whole-
genome shotgun reads. Mix1 and Mix2 are based on the same species of HiSeq,
but with two different abundance profiles.

The MiSeq dataset is particularly difficult to analyze because it contains five
genomes from the Enterobacteriaceae family (Citrobacter, Enterobacter, Kleb-
siella, Proteus and Salmonella). The high sequence similarity of this family can
elevate the difficulty of classification. The metagenome simBA5 was created by
simulating reads from the complete set of bacterial and archaeal genomes in Ref-
Seq, for a total of 1216 species. It contains reads with sequencing errors caused
in the reading process and it was created with the exact purpose of measuring
the stability with existing errors in a complex communities.

We also evaluated the performance of SKraken on a real stool metagenomic
sample (SRR1804065) from the Human Microbiome Project. Because there is
no ground truth for this dataset, we use BLAST with a sequence identity of
95% to find the reads that uniquely mapped to a genome and filter out all
other reads. If two paired-end reads do not map to the same genome, we discard
them. As a result, the real metagenomic sample contains 775 distinct species
and 1053741 reads. A summary of the main characteristics of all simulated and
real metagenomics datasets can be found in Table 1.

Table 1. A summary of simulated and real metagenomics datasets (table taken
from [17]).

Type Dataset Reads Species Reads
length

Single-end HiSeq 10000 10 92

Single-end MiSeq 10000 10 100

Single-end simBA5 10000 1216 100

Paired-end Mix1 1000000 10 100

Paired-end Mix2 1000000 10 100

Paired-end SRR1804065 1053741 775 100

3.2 Evaluation Metrics

In order to compare the results we used the standard metrics of precision and
recall. Given N the number of reads, Y the number of reads classified and X the
number of reads correctly classified, we define precision as the fraction of correct
assignments over the total number of assignments (X/Y), and recall as the ratio
between the number of correct assignments and the number of reads (X/N).
Note that our classification task will be unfolded from both genus and species
level, where genus level is the parent of species level in the taxonomic tree. If
the classification step selected a node at genus level, while we are evaluating the
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species level, even if the assigned genus-level node is the parent of the correct
leaf node, we considered it as mislabeled. On the other hand, when we evaluate
the genus-level, if the classification step selected a taxonomic node that is a
descendant (leaf node, species level) of the correct (genus-level) node, we consider
it to be correct.

When analyzing a metagenomic sample one needs to verify whether the esti-
mated abundance ratios of species is similar to the known profile, here we adopt
Pearson correlation that is a technique widely used. If the correlation value is
close to 1, which means the estimated abundance ratio perfectly matches the
known one. In the next sections, we will test the behavior of SKraken on these
three aspects: precision, recall and Pearson correlation.

3.3 Comparison

For a better perception of the performance of Skraken, we comparison it with
Kraken, since it is one of the cutting-edge tools as mentioned in [16].

For Kraken we use the default parameter k = 31, as suggest by the authors
[13], it is the best balance between precision and recall. For SKraken we use
the same value k = 31 and we test the performance by varying the tuning
parameter Q.

Fig. 4. Results on dataset Mix1 varying the filtering parameter Q, the figure taken
from [17].

We devised a series of tests with the variable parameter Q and the taxonomic
level at which the classification is evaluated. In the first set we want to test how
the filtering parameter Q impact the performance metrics. We run Kraken and
SKraken on the dataset Mix1 and evaluate the classification accuracy at the
species-level. The results are reported in Fig. 4. If the parameter Q = 0 (no
filtering) all k-mers are kept as we expected, thus the performance of Kraken
and SKraken are identical. As Q grows to 100%, we can see that the precision
improves from 63% to 75%, whereas the recall remains constant, which implies
the number of mistakenly-classified reads decreases. Another important obser-
vation is that the Pearson correlation with the known abundance ratios also
increases.
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Thus, we use the most stringent filtering (Q = 100%) to classify all dataset
at the species-level. Figure 5 shows a summary of precision and recall for all
simulated and real metagenomic datasets. This test confirms that SKraken is
able to improve the precision on all datasets without compromising the recall.
On simulated metagenomes the average precision increases from 73% of Kraken
to 81% of SKraken. On the real metagenome, the accuracy of Kraken turns out
to be 91%, SKraken achieves 96%.

Fig. 5. Precision and recall of species-level classification of Kraken and SKraken (Q =
100%) for all datasets.

In general the study of metagenomic sample requires an analysis based on the
component of the genome, and for this reason researchers develop the studies at
the lowest taxonomic level, species. However metagenomic reads can be mapped
at a higher level, it’s also valuable to survey the classification performance at the
genus-level. We performed a set of experiments similar to the ones in species-
level, considering the genus taxonomic level for classification. At first we set
filtering parameter Q = 100%, and the results are shown in Fig. 6. If we observe
the performance of Kraken at genus level we can see that are better than those at
species level, as expected. Indeed, in the taxonomy tree, when the classification
level is more specific (lower), the label assignment is more difficult. Moreover, it
is possible that some mislabeled reads exist at species level, while at genus level
they are correct due to its loose condition. The average precision of Kraken is
96% at genus-level and 73% at species-level, we may see how great it improves.

When applying Q = 100%, SKraken has a higher precision than Kraken in
almost every database, while it’s not the case with respect to recall. If we con-
sider a less stringent threshold Q = 25% (see Fig. 7), we can obtain results that
are in line with the previous experiments, with a moderate improvement in the
precision and nearly unchanged recall. A possible explanation of the small gain
in terms of precision is that the classification at the genus level is relatively eas-
ier, and Kraken has already very good performance. Since precision and recall
depends on the number of reads classified and on the number of correct assign-
ments, in order to have a complete picture, results are summarized in Table 2.



Fast and Sensitive Classification of Short Metagenomic Reads with SKraken 221

Fig. 6. Precision and recall of genus-level classification of Kraken and SKraken (Q =
100%) for all datasets.

Fig. 7. Precision and recall of genus-level classification of Kraken and SKraken (Q =
25%) for all datasets.

Table 2. Number of reads classified and correct assignments for all datasets and both
of the methods.

Species Genus

Kraken SKraken Kraken SKraken

HiSeq Correct assignments 6049 6051 7800 7699

Reads classified 7890 7252 7890 7773

MiSeq Correct assignments 6260 6256 7258 7254

Reads classified 7994 7342 7994 7884

SimBA5 Correct assignments 7688 7687 8700 8561

Reads classified 9327 8513 9327 8929

Mix1 Correct assignments 535809 535798 848221 838720

Reads classified 854256 713935 854255 844077

Mix2 Correct assignments 529717 529734 756196 754441

Reads classified 766829 729856 766829 763114

SRR1804065 Correct assignments 902171 902270 966004 965859

Reads classified 994416 944000 994416 982962
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In the last experiment we test the ability to detect the correct abundance
ratios in a metagenomic sample, we compared it at both genus level and species
level of SKraken and Kraken, as displayed in Fig. 8. Both approaches have an
extraordinary result in genus level, in particular, they virtually peaked in dataset
HISeq, MIX1, MIX2 and SRR1804065. In dataset simBA5, SKraken increases
the score from 0.92 to 0.97, since it is one of the most complex and realistic
dataset, with 1216 species. If we compare these Pearson correlations with those
of species level classification in general the values decrease confirming that it
is more difficult to detect the correct species, rather than the genus. This is
the case where the classification accuracy can benefit from a careful selection
of discriminative k-mers. In fact in all dataset the correlation of SKraken is
better than Kraken. Again, in one of the most difficult metagenome(simBA5)
that contains 1216 species, the improvement is substantial from 0.61 of Kraken
to 0.77 of SKraken.

Fig. 8. The Pearson correlation of the estimated abundances with the correct ratios
for various level of classification and parameters.

All the results above have shown that SKraken enables to obtain a higher
classifying precision without any expense of recall. In other words, more reads
are correctly classified, and the estimated abundance ratios have a better match
with the known profile. An important property of SKraken is that the impact
on these metrics improves as the taxonomic level evaluated in the classifica-
tion becomes lower and thus more difficult. Moreover, as the number of newly
sequenced species grows, the probability that two non-related species share a
given k-mer will grow. For this reason we conjecture that SKraken will be able
to remove more uninformative k-mers as the number of sequenced genomes
increases.

3.4 Memory and Speed

Besides the enhancement of precision, the screening processing has another wel-
comed “side effect”, it reduced the database size since the number of annotated
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k-mers decreases. The size of the database produced by Kraken, using all bac-
terial and archaeal complete genomes in NCBI RefSeq, is about 65 GB and it
contains 5.8 billion k-mers. In Fig. 9 we evaluate the percentage of k-mers fil-
tered by SKraken and the impact in memory for different values of threshold
Q. As expected, the percentage of k-mers filtered grows with the threshold Q
increases and it reaches the maximum of 8.1% with Q = 100. By construction,
the impact in memory depends linearly on the number of k-mers to be indexed.
When Q = 100, SKraken requires to index 5.3 billion k-mers in space of 60 GB.

Fig. 9. Percentage of k-mers filtered and database size as a function of the quality
threshold Q (taken from [17]).

Table 3. 103 reads per minute for various datasets.

Kraken SKraken

HiSeq 126 134

MiSeq 210 231

SimBA5 223 241

Mix1 473 498

Mix2 481 522

SRR1804065 694 754

In Table 3 we report the classification speed as reads classified per minute,
using these tools on a server equipped by Intel Xeon E5450 (12 MB Cache,
3.00 GHz) and 256 GB RAM, without multithreading. SKraken is tested, as a
result being faster than Kraken on all datasets.

4 Conclusion

We have presented SKraken, an efficient and effective method for the genus-level
and species-level classifications. It is based from Kraken, with the additional
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procedure where we detect the representative k-mers and filter the unquali-
fied ones, which produces an improved dictionary. The experimental result has
demonstrated that SKraken obtains a higher precision without compromising
the recall, moreover it boosts the processing speed. As future direction of inves-
tigation it would be interesting to explore alternative way to define the k-mer
scores incorporating other topological information of the tree of life.
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